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Abstract

This study deals with the divergence characteristics of pipes conveying fluid and explores the applicability
of active modal vibration control for suppressing the associated excessive structural vibration. The
Timoshenko beam theory is used to establish the system equation of motion. The analysis is based on the
finite element method. Active modal control technique is developed in this work for pipes conveying fluid
with a flow speed exceeding the critical one. Optimal independent modal space control (IMSC) is applied
for the design. For pipes conveying super-critical flow speed, as considered in this work, the system’s
eigenvalues have both real and complex roots, which must be dealt with in a different way from what has
been established in the literature. A weighting matrix with finite weights is applied for the control of
complex modes, whereas a weighting matrix with an infinite weight is used for controlling the divergent
mode, with roots being real. From this study, it is demonstrated that the control approach proposed in this
work can ensure closed loop stability. The mode switching scheme of directing control to the mode which
has higher modal response is found to be beneficial in reducing the overall structural vibration of the fluid-
conveying pipe.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic analysis of pipes conveying fluid has been an important subject both in industrial
applications and academic research. Flutter instability was observed for cantilever pipes once the
flow velocity exceeds the critical one [1,2]. When the critical flow velocity is exceeded, pipes
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supported at both ends will buckle [3,4]. The subject is important in the design of mechanical
components subjected to high flow disturbance, such as feed lines of rocket motors [5], piping
systems [6], and nuclear reactor components [7]. A review article reported by Pa.idoussis and Li [8]
shows that there has been hundreds of papers written on the subject.

Although the research efforts made on the dynamic analysis of fluid conveying pipes have been
extensive, active vibration suppression of pipes conveying fluid has not been well studied. Tani
and Sudani [9] applied a sub-optimal control law for vibration suppression of tubes conveying
fluid using motor controlled tendons. The coupled mode control technique was used. Yau et al.
[10] employed quantitative feedback theory to actively control the chaotic vibration of a
constrained flexible fluid-conveying pipe. The piezoelectric actuators were used in their work. The
analysis was conducted using a two-degree-of-freedom model. Sugiyama et al. [11] studied a
vibration suppression technique by using an electronic valve to control the internal flowing fluid
for a cantilever pipe with sub-critical flow speeds. The valve was used to adjust the speed of the
flowing fluid through a feedback on–off control. To suppress the flutter instability of cantilever
pipes subjected to high flow disturbance, Lin and Chu [12] presented an independent modal
control technique in accordance with a new design method developed by Lin and Chu [13]. The
control action was provided by a pair of surface mounted piezoelectric actuators. The technique
has been shown to have advantages over the traditional coupled mode control scheme, in that it
requires far less computer storage, demands considerably less computational effort, and allows a
larger choice of control approaches to be used, including non-linear control [14]. Tsai and Lin [15]
reported a further investigation on flutter control of cantilever pipes conveying fluid by using an
adaptive approach. An instantaneous optimal control method was reported by Lin and Tsai [16]
for non-linear vibration suppression of a cantilever pipe conveying fluid with flutter instability.

To the authors’ knowledge, active modal control of pipes conveying fluid with divergence
instability considered has not been reported in the literature. A new control formulation must be
developed to address such a concern. In the following sections, a general finite element
formulation with the modal control approach is presented. A detailed examination of the case of
using one actuator for the control of one complex mode is addressed. A subsequent investigation
of the control formulation for a divergent mode is then conducted. A numerical example is
provided to illustrate the approach developed.

2. Model development

Fig. 1 shows a fixed–fixed pipe conveying fluid with two independent arms which are controlled
by extension or contraction of the attached springs to create moments acting on the pipe. Two
control inputs can be realized by using the present configuration. A simpler form of the control
mechanism, which is capable of providing only one control input, has been reported by Lin and
Trethewey [17] for active vibration control of a beam subjected to a moving load by using the
coupled mode control formulation. The following equation of motion can be obtained with the
use of finite element modelling technique:

½M�f .DðtÞg þ ½C�f ’DðtÞg þ ½K�fDðtÞg ¼ I %NmT
LTLðtÞ þ I %NmT

RTRðtÞ; ð1Þ
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where ½M�; ½C�; and ½K� are the structural mass, damping, and stiffness matrices respectively.
Contributions from both the pipe and the flowing fluid are accounted for. I %NmT

L and I %NmT
R are

the transposition of the shape functions for rotation evaluated at the left and right control arms’
positions, i.e., xL and xR; respectively, as shown in Fig. 1. fDðtÞg; f ’DðtÞg; and f .DðtÞg; denote
displacement, velocity, and acceleration vectors respectively. The detailed description of the
element entries within the structural matrices and the shape functions can be found in the work of
Chu and Lin [18] where the dynamics of fluid-conveying Timoshenko pipes was analyzed. TLðtÞ
and TRðtÞ are the left and right control moments respectively. They are created due to the
extension or contraction of the corresponding springs and can be described as

TLðtÞ ¼ 2kshðuLðtÞ 	 hI %NmLfDðtÞgÞ;

TRðtÞ ¼ 2kshðuRðtÞ 	 hI %NmRfDðtÞgÞ; ð2Þ

where ks denotes the control spring constant; h is the length of the control arm; uLðtÞ and uRðtÞ are
the actively controlled extension or contraction of the left and right spring pairs respectively. The
last term on the right side of Eq. (2) expresses the passive effect of the springs. Note that clockwise
rotation is taken to be positive for both the finite element nodes of the pipe and control motors
which produce the control inputs, uLðtÞ and uRðtÞ:

Independent modal space control technique is considered in this work. To proceed, the system
equations must first be decoupled in modal space, where the modal equations are independent of
each other. Eq. (1) is rearranged by decomposing the second order ordinary differential equations
into first order ones:

’xðtÞ ¼ AxðtÞ þ BuðtÞ; ð3Þ

in which

xðtÞ ¼
f ’DðtÞg

fDðtÞg

 !
;

A ¼
	½M�	1½C� 	½M�	1ð½K� þ ½ %k�Þ

½I� ½0�

" #
;
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B ¼ 2ksh
½M�	1I %NmT

L ½M�	1I %NmT
R

f0g f0g

 !
ð4Þ

and

uðtÞ ¼ IuLðtÞ uRðtÞm
T: ð5Þ

where

½ %k� ¼ 2½ #N�ksh
2; ð6Þ

in which

½ #N� ¼ ðI %NmT
LI %NmL þ I %NmT

RI %NmRÞ: ð7Þ

The right and left modal matrices in real quantities can be arranged as [19]

R ¼ a1 b1 a2 b2 ? an bn

� �
;

L ¼ c1 	d1 c2 	d2 ? cn 	dn

� �
; ð8Þ

where the odd and even column entries represent the real and imaginary parts of the
corresponding eigenvectors respectively. Note that the general descriptions as shown in Eq. (8)
need to be modified for the pipe conveying fluid with a divergent mode. As the flow speed exceeds
the critical one, the fundamental mode of the fixed–fixed pipe system considered here is divergent
[8], i.e., the eigenvalues of the first mode do not appear as complex conjugate pairs, as opposed to
the other modes. They are real numbers with the imaginary part being zero. The corresponding
modal vectors are real, instead of complex. The divergence instability in this case is due to the
centrifugal fluid force, which acts in the same manner as a compressive load. The effective stiffness
of the system is diminished with increasing fluid flow speed. For sufficiently large flow speed, the
restoring flexural force cannot resist the destabilizing centrifugal fluid force, which results in
buckling or known as divergence. For a fixed–fixed pipe conveying fluid, the coriolis forces do no
work [8]. The first two columns of the left and right modal matrices shown in Eq. (8) are replaced
with the real modal vectors corresponding to the first two eigenvalues, the fundamental mode.
The orthogonality condition leads to:

LTR ¼

2

2 zeros

1

1

&

zeros 1

1

2
666666666664

3
777777777775

ð9Þ

and

LTAR ¼ L; ð10Þ
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in which

L ¼

2s11 0

0 2s12 zeros

s2 o2

	o2 s2

&

zeros sn on

	on sn

2
666666666664

3
777777777775
; ð11Þ

where s11 and s12 denote the eigenvalues of the first mode, with imaginary parts being zero and si

and oi; i ¼ 2; 3;y; n; represent the real and imaginary parts of the ith mode respectively.
Alternatively, the following equations can be used:

L11 ¼
2s11 0

0 2s12

" #
; ð12Þ

Ls ¼
ss os

	os ss

" #
; s ¼ 2; 3;y; n: ð13Þ

The physical state vector can be transformed to the modal co-ordinate by using the following
transformation:

xðtÞ ¼ RzðtÞ: ð14Þ

Substituting Eq. (14) into Eq. (3) and premultiplying by LT yields

LTR’zðtÞ ¼ LzðtÞ þ ZðtÞ; ð15Þ

where

ZðtÞ ¼ LTBuðtÞ ð16Þ

are the modal control forces. Eq. (15) can be represented by n pairs of equation in the following
form:

’z1ðtÞ ¼ L1z1ðtÞ þ 1
2
Z1ðtÞ

’zsðtÞ ¼ LszsðtÞ þ ZsðtÞ; s ¼ 2; 3;y; n; ð17Þ

where

z1ðtÞ ¼ Iz1ðtÞ z2ðtÞm
T;

L1 ¼
s11 0

0 s12

" #
;

Z1ðtÞ ¼ IZ1ðtÞ Z2ðtÞm
T;

zsðtÞ ¼ Iz2s	1ðtÞ z2sðtÞm
T;

ZsðtÞ ¼ IZ2s	1ðtÞ Z2sðtÞm
T: ð18Þ
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Note that the factor, 1/2, preceeding the first modal force vector can be absorbed in the
corresponding left eigenvectors because the eigenvectors can be arbitrarily normalized. This
results in an identical equation format for the divergent mode and the rest complex modes.
Optimal independent modal space control of a system can be realized by minimizing the cost
function

J ¼
Xq

s¼1

Js; ð19Þ

in which Js is the independent modal cost function for steady state system response, and q is the
number of modes to be controlled. Js is defined as

Js ¼
Z

N

0

ðzTs ðtÞzsðtÞ þ ZT
s ðtÞFsZsðtÞÞ dt; s ¼ 1; 2;y; q; ð20Þ

where Fs is the weighting matrix to be selected by the analyst. For this formulation, the optimal
modal control forces can be obtained as [20]

ZsðtÞ ¼ 	F	1
s PszsðtÞ ¼ 	KszsðtÞ; s ¼ 1; 2;y; q; ð21Þ

where Ks is the feedback gain matrix designed for this optimal controller and Ps is obtained by
solving the matrix Riccati equation

PsLs þ LT
s Ps 	 PsF

	1
s Ps þ I ¼ 0; s ¼ 1; 2;y; q: ð22Þ

To control a complex mode, Meirovitch and Baruh [19] and Meirovitch and Ghosh [21]
proposed the control of the two-dimensional modal displacement vector zs by only one
component of the modal force control vector. This is accomplished by choosing

F	1
s ¼

0 0

0 F	1
s

" #
: ð23Þ

This is equivalent to using an infinite cost weight for the first component of the complex modal
force vector and that component will then become zero in the optimization process since its cost is
infinite. The problem is that control spillover into the first component of the modal force vector
for the complex mode controlled in the present case may lead to instability, depending on how the
eigenvectors are normalized, as explored in detail by Lin and Chu [13] concerning modal control
of general dynamic systems. For controlling a complex mode, a different form for the weighting
matrix is proposed, which is given below

F	1
s ¼

%Fs 0

0 %Fs

" #
; s ¼ 2; 3;y; q; ð24Þ

where

%Fs 
 F	1
s ; s ¼ 2; 3;y; q: ð25Þ

In the new design presented by Lin and Chu [13] for independent modal space control of
general dynamic systems, it has been shown that the new design cannot lead to instability by using
one actuator for the control of one stable complex mode, regardless of how the complex
eigenvectors are normalized in the design process, whereas the previous reported approach may
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lead to closed loop instability depending on the normalization procedure of the complex
eigenvectors. However, a complete stability analysis of the control formulation has not been
established. Stability criteria will be derived in this work to examine the stability property of the
controlled system with a typical stability map shown to illustrate the concept. This will make clear
the applicable regions and limitations of controlling one complex mode using one actuator for
independent modal space control of general dynamic systems.

When the approach as suggested by Lin and Chu [13] is applied, the closed loop eigenvalues for
the complex mode controlled can be shown as

ls ¼ ss 	
ss þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

s þ %Fs

p
2

7
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðss þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

s þ %Fs

q
Þ2 	 4o2

s

r
: ð26Þ

Unlike the approach proposed by the pioneer developers of the IMSC technique, the present
formulation leads to closed loop eigenvalues which are independent of how the complex
eigenvectors are normalized. It is apparent from inspection of Eq. (26) that for a stable complex
mode, the control can never destabilize the system and always adds to improve the system
performance. However, for an unstable complex mode, the stability characteristics of the closed
loop mode needs to be established. From Eq. (26), it can be shown that if the last term in the right
side turns out to be imaginary or zero, the closed loop mode is stable since the resultant of the first
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Fig. 2. A typical stability map for controlling a complex mode using one actuator.
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two terms are always negative, knowing that %Fs is positive in the optimal control formulation.
This implies

ðss þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

s þ %Fs

q
Þ2 	 4o2

sp0; ð27Þ

thus

ss þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

s þ %Fs

q
p2os; ð28Þ

which leads to the determination of %Fs for stability:

%Fsp4osðos 	 ssÞ: ð29Þ

If the last term in the right side of Eq. (26) turns out to be a non-zero real number, then stability
of the controlled complex mode can be assured if the closed loop eigenvalues are negative real
numbers. This condition requires that

ss 	
ss þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

s þ %Fs

p
2

o	
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðss þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

s þ %Fs

q
Þ2 	 4o2

s

r
: ð30Þ

Solving for %Fs yields the following criterion for stability when controlling an unstable complex
mode:

%Fso
o4

s 	 s4
s

s2
s

: ð31Þ
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Fig. 3. Effect of the positions of the control arms on the critical flow speed.
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Fig. 4. Central displacement response of the fluid-conveying pipe with the first two modes aimed for control.

Fig. 5. The first three modal responses of the fluid-conveying pipe with the first two modes aimed for control. Top: the

first mode; middle: the second mode; bottom: the third mode. Thick line: controlled; thin line: uncontrolled.
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A typical stability map for controlling an unstable complex mode is illustrated in Fig. 2. The
stability characteristics can be summarized as follows:

1. For the region below S1; the closed loop eigenvalues lie in the left side of the complex plane,
hence the controlled complex mode is underdamped.

2. On surface S1; the closed loop eigenvalues are repeated negative real numbers, hence the
controlled complex mode is critically damped. This feature is utilized when controlling complex
modes of the fluid-conveying pipe discussed in the subsequent section.

3. For the region between surfaces S1 and S2; the closed loop eigenvalues are negative real
numbers, hence the controlled complex mode is overdamped.

4. On surface S2; the closed loop eigenvalues have a root being zero, that is, a root is at the origin
of the complex plane. Thus, surface S2 is the divergence boundary for the system considered.

5. For the region above S2; the closed loop eigenvalues contain a positive real root, hence the
controlled complex mode is divergent.

From observation of Eqs. (29) and (31), any positive %Fs will make the system unstable when
ssXos: In this situation, it is impossible to control an unstable complex mode using one actuator.

For the system considered in this work concerning a fixed–fixed fluid-conveying pipe with flow
speed above the critical one, the fundamental mode exhibits divergence instability. The
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Fig. 6. Modal responses of the fourth to the sixth modes of the fluid-conveying pipe with the first two modes aimed for

control. Top: the fourth mode; middle: the fifth mode; bottom: the sixth mode. Thick line: controlled; thin line:

uncontrolled.
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eigenvalues corresponding to this divergent mode are real, as opposed to the other modes which
are complex. One actuator is proposed to control this mode. The relationship between the modal
control force and the physical control input for the fundamental mode can be shown as

Z1ðtÞ

Z2ðtÞ

 !
¼

Z1

Z2

 !
%uðtÞ; ð32Þ

in which %uðtÞ represents the actual control force; Z1 and Z2 are not unique due to non-unique
normalized eigenvectors. When the weighting matrix in the form as shown in Eq. (24) is applied,
the closed loop system matrix with control spillover between the complex modal force vectors
considered can be written as

An

1 ¼
s11 	

Z2
1

Z2
1
þZ2

2

%F1 %P1 	 Z1Z2

Z2
1
þZ2

2

%F1 %P1

	 Z1Z2

Z2
1
þZ2

2

%F1 %P1 s12 	
Z2

2

Z2
1
þZ2

2

%F1 %P1

2
64

3
75; ð33Þ

where %F1 and %P1 denote an element of the weighting matrix and the corresponding solution for the
elements of the Riccati matrix respectively. Note that the present formulation yields a diagonal
Riccati matrix with identical diagonal elements [13]. The eigenvalues, the closed loop poles, solved
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Fig. 7. Active extension/contraction of the control springs for the fluid-conveying pipe with the first two modes aimed

for control. Top: left actuator; bottom: right actuator.
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from Eq. (33) are very complicated and are dependent of how the eigenvectors are normalized.
This feature is highly undesirable because the way to normalize the eigenvectors is arbitrary. This
situation is similar to the case when the form as shown in Eq. (23) is used to control a complex
mode. For the system considered here, the eigenvalues of the divergent mode appear to be s11o0
and s12 > 0: It is natural to aim the control for the positive eigenvalue which leads to divergent
response. To realize this, a weighting matrix in the form of Eq. (23) is examined here, where an
infinite weight is used for the first modal force. In the optimization process, the control for the first
modal force will then turn out to be zero, indicating the first eigenvalue, which is negative, is left
uncontrolled by the intention of system design. However, because control spillover exists between
the modal forces, the system behavior must be analyzed taking into account such an effect. It
turns out the Riccati matrix equation for this divergent mode can be solved in closed form and is

P1 ¼
P11 P12

P21 P22

" #
¼

	 1
2s11

0

0
s12þ

ffiffiffiffiffiffiffiffiffiffiffi
s2

12
þ %F1

p
%F1

2
4

3
5; ð34Þ

in which

%F1 
 F	1
1 : ð35Þ
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Fig. 8. Central displacement response of the fluid-conveying pipe with the first mode and the third mode aimed for

control.
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The designed modal control forces are then

Z1ðtÞ

Z2ðtÞ

 !
¼

0 0

0 	 %F1P22

" #
z1ðtÞ

z2ðtÞ

 !
: ð36Þ

The designed physical control input can be obtained from Eqs. (32) and (36)

%uðtÞ ¼ 	
%F1P22

Z2

z2ðtÞ: ð37Þ

The actual modal control forces, as opposed to those designed as shown in Eq. (36), are
determined by substituting Eq. (37) into Eq. (32)

Z1ðtÞ

Z2ðtÞ

 !
¼

0 	Z1

Z2

%F1P22

0 	 %F1P22

" #
z1ðtÞ

z2ðtÞ

 !
: ð38Þ

The closed loop system equations for the fundamental mode then become

’z1 ¼ An

1z1; ð39Þ
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Fig. 9. The first three modal responses of the fluid-conveying pipe with the first mode and the third mode aimed for

control. Top: the first mode; middle: the second mode; bottom: the third mode. Thick line: controlled; thin line:

uncontrolled.
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where

An

1 ¼
s11 	Z1

Z2

%F1P22

0 s12 	 %F1P22

" #
: ð40Þ

The closed loop eigenvalues can then be obtained as

l11 ¼ s11; ð41Þ

l12 ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%F1 þ s2

12

q
: ð42Þ

Note that the first eigenvalue, which is negative, remains unchanged after control. With the use
of any weighting factor, which is a positive number by design, the second eigenvalue is always
negative disregarding how positive the open loop eigenvalue is. This demonstrates that the
approach proposed here can assure closed loop stability for the divergent mode. It is interesting to
note that a weighting matrix in a form as shown in Eq. (23) suffers a serious stability problem
when used for controlling a complex mode [13], whereas it can be successfully applied for
controlling a divergent mode with closed loop stability guaranteed.
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Fig. 10. Modal responses of the fourth to the sixth modes of the fluid-conveying pipe with the first mode and the third

mode aimed for control. Top: the fourth mode; middle: the fifth mode; bottom: the sixth mode. Thick line: controlled;

thin line: uncontrolled.
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3. Numerical results

The pipe parameters used for the simulation study are: Young’s modulus, E ¼
6:89ð1010Þ N=m2; length, L ¼ 0:5585 m; mass per unit length, rA ¼ 0:342 kg=m; outside diameter,
do ¼ 0:0254 m; inside diameter, di ¼ 0:0221 m: In this study, a total of 12 elements is used for the
numerical analysis. Rayleigh damping is considered for the pipe. The pipe modal dampings for the
first mode and the sixth mode are taken to be one percent and two percents of the critical damping
respectively, which results in the modal dampings for the modes between these two specified
frequencies lying below those just specified [22]. The mass per unit length of the fluid, mf ; is
0:0855 kg=m: The length of the control arms, h; is 0:07 m: The control spring constant, ks; is
900EI=L3:

Fig. 3 shows the effect of control arms’ positions on the critical flow speed ratio, defined as the
ratio of the critical flow speed with and without the passive effect of the control mechanism
considered. The right control arm is considered to be symmetrically positioned with respect to the
left one. As can be seen from Fig. 3, the favorable locations of the control arms are located at 1/4
and 3/4 of the pipe length for the left and the right control arms respectively. This configuration is
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Fig. 11. Active extension/contraction of the control springs for the fluid-conveying pipe with the first mode and the

third mode aimed for control. Top: left actuator; bottom: right actuator.
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utilized subsequently for active control of the fluid-conveying pipe. Note that the modal control
inputs are designed first when applying IMSC and are independent on the positions of the
control arms. However, in the process of synthesizing the actual control inputs from the modal
control inputs, positions of the control arms play an important role. The use of the positions of
the control arms as determined above results in smaller actual control inputs as compared to
those when other positions are used, which is evident from discussions presented in the previous
section.

The dynamic displacement response at the pipe center due to a unit impact load at its mid-span
is shown in Fig. 4 with control of the first two modes being considered. The constant fluid flowing
velocity is 1:0021vcr; where vcr is the critical flow speed to buckle the pipe, with the passive effect of
the control mechanism considered. The abscissa refers to a normalized time scale, in which t is the
time required for a fluid particle to travel across the pipe span. The pipe will buckle if left
uncontrolled due to a super-critical flow speed. As can be seen in Fig. 4, the pipe vibration can be
suppressed. The pipe response no longer is divergent and is now dominated by the third mode,
which is left uncontrolled in the control system design. Figs. 5 and 6 show the first to the third and
the fourth to the sixth modal responses respectively. As can be seen, vibrations of the first two
modes are nicely suppressed, whereas the third mode is not affected much due to control spillover.
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Fig. 12. Central displacement response of the fluid-conveying pipe with the mode switching control enabled.
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The control spillover has a detrimental effect for the fourth to the sixth modal responses.
However, higher modal response contribute less to the overall physical response due to their
inherently higher rigidities and damping effects [23]. The uncontrolled first modal response can be
found to grow monotonously, as predicted by linear theory. The post-buckling response of this
mode can only be predicted accurately by a non-linear theory, which is beyond the scope of this
work. Note that the IMSC technique can never destabilize the modes uncontrolled due to control
spillover from the modes controlled because the modes are controlled independently. In the
present case, the modal control forces only consist of modal states of the controlled modes, the
first two modes in this case. The corresponding required control inputs, the extension or
contraction of the control springs, of the left and right control mechanisms are shown in Fig. 7.
The physical control inputs uðtÞ; as computed from Eq. (16), are dependent on the controlled
modal states only, and hence control spillover to all other uncontrolled modes cannot induce
instability. The control spillover in such a case acts as disturbance, which is independent of the
modal states of the uncontrolled modes.

Fig. 8 illustrates the mid-pipe response when the first and the third modes are aimed for control.
The divergent behavior of the fundamental mode can be successfully controlled. The controlled
pipe response can be seen to be dominated by the second mode. Figs. 9 and 10 show the first to the
third and the fourth to the sixth modal responses respectively. Vibrations of the first and the third
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Fig. 13. The first three modal responses of the fluid-conveying pipe with the mode switching control enabled. Top: the

first mode; middle: the second mode; bottom: the third mode. Thick line: controlled; thin line: uncontrolled.

Y.-H. Lin et al. / Journal of Sound and Vibration 271 (2004) 577–597 593



modes are well suppressed. Control spillover seems to have a favorable effect on the second mode,
contrary to the previous case. The effect of control spillover is not always detrimental. It depends
on both the controlled and uncontrolled modal characteristics and the actuator locations. Similar
to the previous case, the control spillover worsens the fourth to the sixth modal responses. The
corresponding required control inputs are shown in Fig. 11.

From the above analyses, it shows that the third mode dominates the controlled pipe response
when the first two modes are controlled, whereas the controlled pipe response is dominated by the
second mode if the first and third modes are aimed for control. Note that the fundamental mode is
unstable and must always be controlled. To further suppress the pipe vibration, an approach of
switching the control target is examined. This is done by comparing the second and third modal
responses at each control step and the control input is switched to control the mode which has a
higher modal response. Fig. 12 shows the central pipe response with the switching scheme
implemented. As can be seen, the controlled pipe vibration can be further suppressed, as
compared to the previous two analysis cases. As shown in Fig. 13, vibrations of the first three
modes are nicely suppressed. Control spillover effect for the fourth to the sixth modes is similar to
the previous cases, as illustrated in Fig. 14. Fig. 15 shows the corresponding required control
inputs. The switching pattern is illustrated in Fig. 16. Unlike the other two cases, the
control inputs appear to be larger and consist of alternating spikes rather than smoothly
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Fig. 14. Modal responses of the fourth to the sixth modes of the fluid-conveying pipe with the mode switching control

enabled. Top: the fourth mode; middle: the fifth mode; bottom: the sixth mode. Thick line: controlled; thin line:

uncontrolled.
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changing curves. The designer should be aware of this effect during implementation of the control
system.

4. Conclusions

Optimal independent modal space control for a fixed–fixed pipe conveying fluid with a super-
critical flow speed has been investigated by using a general finite element formulation. The
uncontrolled system has a divergence instability in the fundamental mode. The complete stability
behavior of a controlled system with the use of one actuator for the control of one complex mode
has been determined in this work. For a system having a divergent mode, such as the case as
considered in this study, it has been demonstrated that one actuator is sufficient to control the
unstable mode with stability of the closed system guaranteed. The Riccati matrix equations are
notoriously stiff and often cause numerical convergence problems when coupled mode control
technique is used. In this study, the closed form solution for the Riccati matrix equations has been
derived, which is virtually impossible for a large dynamic system using the coupled mode control
approach. Numerical analysis results show that by switching the control effort to the mode that
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Fig. 15. Active extension/contraction of the control springs for the fluid-conveying pipe with the mode switching

control enabled. Top: left actuator; bottom: right actuator.
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has a higher modal response, the overall pipe vibration can be further suppressed. However, more
control inputs and fast acting actuators are required to meet the control requirement. In any case,
the divergence instability of the fluid-conveying pipe can be successfully stabilized and excessive
structural vibration is suppressed by using the modal control approach presented.
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